3-2 Reteaching

Direct Variation

A **direct variation** is a relationship that can be represented by a function in the form y = kx where $k \neq 0$. The constant of variation for a direct variation k is the

coefficient of x. The equation y = kx can also be written as $\frac{y}{x} = 5$.

Problem

Does the equation 6x + 3y = 9 represent a direct variation? If so, find the constant of variation.

If the equation represents a direct variation, the equation can be rewritten in the form y = kx. So, solve the equation for y to determine whether the equation can be written in this form.

$$6x + 3y = 9$$

$$3y = 9 - 6x$$

Subtract 6x from each side.

$$y = 3 - 2x$$

Divide each side by 3.

You cannot write the equation in the form y = kx. So 6x + 3y = 9 does not represent a direct variation.

Problem

Does the equation 5y = 3x represent a direct variation? If so, find the constant of variation.

Again, if the equation represents a direct variation, the equation can be rewritten in the form y = kx. So, solve the equation for y to determine whether the equation can be written in this form.

$$5y = 3x$$

 $y = \frac{3}{5}x$ Divide each side by 5.

The equation has the form y = kx, so the equation represents a direct variation. The coefficient of x is $\frac{3}{5}$, so the constant of variation is $\frac{3}{5}$.

Exercises

4. 2x = v - 5

Determine whether each equation represents a direct variation. If it does, find the constant of variation.

1. $2y = x$	2. $3x + 2y = 1$	3. $-4y = 8x$

5. 4x - 3y = 0

6. 5x = 2y

Class

Name	Class	Date

3-2 Reteaching (continued)

Direct Variation

To write an equation for direct variation, find the constant of variation k using an ordered pair. Then use the value of k to write an equation.

Problem

Suppose y varies directly with x, and y = 24 when x = 8. What direct variation equation relates x and y? What is the value of y when x = 10?

You are given that x and y vary directly. This means that the relationship between x and y can be written in the form y = kx, where k is a constant.

y = kx	Start with the direct variation equation.
24 = k(8)	Substitute the given values: 8 for <i>x</i> and 24 for y.
3 = k	Divide each side by 8 to solve for <i>k</i> .
y = 3x	Write the direct variation equation that relates x and y by substituting 3 for k in $y = kx$.

The equation y = 3x relates x and y. When x = 10, y = 3(10) or 30.

Exercises

Suppose y varies directly with x. Write a direct variation equation that relates x and y. Then find the value of y when x = 6.

7. $y = 14$ when $x = 2$.	8. $y = 3$ when $x = 9$.
9. $y = 12$ when $x = -24$.	10. $y = -81$ when $x = 9$.
11. $y = -16$ when $x = -4$.	12. $y = 5$ when $x = 20$.

^{13.} Consider the direct variation y = 3x.

- **a.** List three ordered pairs that satisfy the equation.
- **b.** Plot your three ordered pairs from part (a) on a coordinate grid.
- **c.** Complete the graph of y = 3x on the grid.