\qquad
\qquad Date \qquad

3-2 Reteaching

Direct Variation

A direct variation is a relationship that can be represented by a function in the form $y=k x$ where $k \neq 0$. The constant of variation for a direct variation k is the coefficient of x. The equation $y=k x$ can also be written as $\frac{y}{x}=5$.

Problem

Does the equation $6 x+3 y=9$ represent a direct variation? If so, find the constant of variation.

If the equation represents a direct variation, the equation can be rewritten in the form $y=k x$. So, solve the equation for y to determine whether the equation can be written in this form.

$$
\begin{aligned}
6 x+3 y & =9 & & \\
3 y & =9-6 x & & \text { Subtract } 6 x \text { from each side. } \\
y & =3-2 x & & \text { Divide each side by } 3 .
\end{aligned}
$$

You cannot write the equation in the form $y=k x$. So $6 x+3 y=9$ does not represent a direct variation.

Problem

Does the equation $5 y=3 x$ represent a direct variation? If so, find the constant

 of variation.Again, if the equation represents a direct variation, the equation can be rewritten in the form $y=k x$. So, solve the equation for y to determine whether the equation can be written in this form.

$$
5 y=3 x
$$

$$
y=\frac{3}{5} x \quad \text { Divide each side by } 5
$$

The equation has the form $y=k x$, so the equation represents a direct variation.
The coefficient of x is $\frac{3}{5}$, so the constant of variation is $\frac{3}{5}$.

Exercises

Determine whether each equation represents a direct variation. If it does, find the constant of variation.

1. $2 y=x$
2. $3 x+2 y=1$
3. $-4 y=8 x$
4. $2 x=y-5$
5. $4 x-3 y=0$
6. $5 x=2 y$
\qquad
\qquad Date \qquad

3-2 Reteaching (continued)

Direct Variation

To write an equation for direct variation, find the constant of variation k using an ordered pair. Then use the value of k to write an equation.

Problem

Suppose y varies directly with x, and $y=24$ when $x=8$. What direct variation equation relates x and y ? What is the value of y when $x=10$?

You are given that x and y vary directly. This means that the relationship between x and y can be written in the form $y=k x$, where k is a constant.

$$
\begin{array}{ll}
y=k x & \text { Start with the direct variation equation. } \\
24=k(8) & \text { Substitute the given values: } 8 \text { for } x \text { and } 24 \text { for } y . \\
3=k & \text { Divide each side by } 8 \text { to solve for } k . \\
y=3 x & \text { Write the direct variation equation that relates } x \text { and } y \\
\text { by substituting } 3 \text { for } k \text { in } y=k x .
\end{array}
$$

The equation $y=3 x$ relates x and y. When $x=10, y=3(10)$ or 30 .

Exercises

Suppose y varies directly with x. Write a direct variation equation that relates x and y. Then find the value of y when $x=6$.
7. $y=14$ when $x=2$.
8. $y=3$ when $x=9$.
9. $y=12$ when $x=-24$.
10. $y=-81$ when $x=9$.
11. $y=-16$ when $x=-4$.
12. $y=5$ when $x=20$.
13. Consider the direct variation $y=3 x$.
a. List three ordered pairs that satisfy the equation.
b. Plot your three ordered pairs from part (a) on a coordinate grid.
c. Complete the graph of $y=3 x$ on the grid.

