3-1 Reteaching

Rate of Change and Slope

The rate of the vertical change to the horizontal change between two points on a line is called the slope of the line.

slope = $\frac{\text{vertical change}}{\text{horizontal change}} = \frac{\text{rise}}{\text{run}}$

There are two special cases for slopes.

- A horizontal line has a slope of 0.
- A vertical line has an undefined slope.

In general, a line that slants upward from left to right has a positive slope.

Problem

The slope of the line is -2.

In general, a line that slants downward from left to right has a negative slope.

Class

Class

3-1 Reteaching (continued)

Rate of Change and Slope

Exercises

Find the slope of each line.

Suppose one point on a line has the coordinates (x_1, y_1) and another point on the same line has the coordinates (x_2, y_2) . You can use the following formula to find the slope of the line.

slope = $\frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}$, where $x_2 - x_1 \neq 0$

Problem

What is the slope of the line through R(2, 5) and S(-1, 7)?

slope $= \frac{y_2 - y_1}{x_2 - x_1}$ = $\frac{7 - 5}{-1 - 2}$ Let $y_2 = 7$ and $y_1 = 5$. Let $x_2 = -1$ and $x_1 = 2$. = $\frac{2}{-3} = -\frac{2}{3}$

Exercises

Find the slope of the line that passes through each pair of points.

Pearson Texas Algebra I