\qquad Class \qquad Date \qquad

3-1 Reteaching

Rate of Change and Slope

The rate of the vertical change to the horizontal change between two points on a line is called the slope of the line.

$$
\text { slope }=\frac{\text { vertical change }}{\text { horizontal change }}=\frac{\text { rise }}{\text { run }}
$$

There are two special cases for slopes.

- A horizontal line has a slope of 0 .
- A vertical line has an undefined slope.

Problem

What is the slope of the line?

$$
\begin{aligned}
\text { slope } & =\frac{\text { vertical change }}{\text { horizontal change }}=\frac{\text { rise }}{\text { run }} \\
& =\frac{1}{3}
\end{aligned}
$$

The slope of the line is $\frac{1}{3}$.

In general, a line that slants upward from left to right has a positive slope.

Problem

What is the slope of the line?

$$
\begin{aligned}
\text { slope } & =\frac{\text { vertical change }}{\text { horizontal change }}=\frac{\text { rise }}{\text { run }} \\
& =\frac{-2}{1} \\
& =-2
\end{aligned}
$$

The slope of the line is -2 .

In general, a line that slants downward from left to right has a negative slope.
\qquad
\qquad
\qquad

3-1 Reteaching (continued)

Rate of Change and Slope

Exercises

Find the slope of each line.
1.

2.

3.

Suppose one point on a line has the coordinates $\left(x_{1}, y_{1}\right)$ and another point on the same line has the coordinates $\left(x_{2}, y_{2}\right)$. You can use the following formula to find the slope of the line.

$$
\text { slope }=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \text { where } x_{2}-x_{1} \neq 0
$$

Problem

What is the slope of the line through $R(2,5)$ and $S(-1,7)$?

$$
\begin{aligned}
\text { slope } & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \\
& =\frac{7-5}{-1-2} & \text { Let } y_{2}=7 \text { and } y_{1}=5 \\
& =\frac{2}{-3}=-\frac{2}{3} & \text { Let } x_{2}=-1 \text { and } x_{1}=2
\end{aligned}
$$

Exercises

Find the slope of the line that passes through each pair of points.
4. $(0,0),(4,5) \frac{5-0}{4-0}: \frac{5}{4}$
5. $(2,4),(7,8) \underset{7}{7}=\frac{5}{5}$
6. $(-2,0),(-3,2)-\frac{2-0}{-3-(-2)}=\frac{2}{-1}=-2$
7. $(-2,-3),(1,1)$
$\frac{1-(3)}{1-(2)}=\frac{1+3}{1+2}=\frac{4}{3}$
8. $(1,4),(2,-3)$
$\frac{-3-4}{2-1}:-\frac{7}{1}=-7$
9. $(3,2),(-5,3)$
$\frac{3-2}{-5-3}: \frac{1}{-8}=-\frac{1}{8}$

