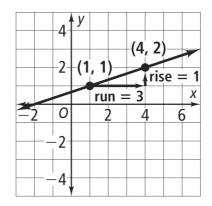
3_1 Reteaching

Rate of Change and Slope

The rate of the vertical change to the horizontal change between two points on a line is called the slope of the line.

$$slope = \frac{vertical change}{horizontal change} = \frac{rise}{run}$$

There are two special cases for slopes.


- A horizontal line has a slope of 0.
- A vertical line has an undefined slope.

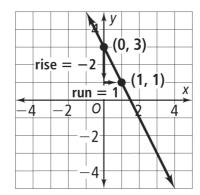
Problem

What is the slope of the line?

slope =
$$\frac{\text{vertical change}}{\text{horizontal change}} = \frac{\text{rise}}{\text{run}}$$

= $\frac{1}{3}$

The slope of the line is $\frac{1}{3}$.


In general, a line that slants upward from left to right has a positive slope.

Problem

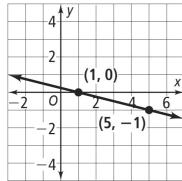
What is the slope of the line?

slope =
$$\frac{\text{vertical change}}{\text{horizontal change}} = \frac{\text{rise}}{\text{run}}$$

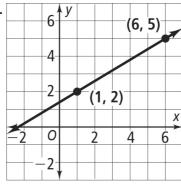
= $\frac{-2}{1}$
= -2

The slope of the line is -2.

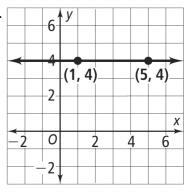
In general, a line that slants downward from left to right has a negative slope.


3-1 Reteaching (continued)

Rate of Change and Slope


Exercises

Find the slope of each line.


1.

2

3.

Suppose one point on a line has the coordinates (x_1, y_1) and another point on the same line has the coordinates (x_2, y_2) . You can use the following formula to find the slope of the line.

slope =
$$\frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}$$
, where $x_2 - x_1 \neq 0$

Problem

What is the slope of the line through R(2, 5) and S(-1, 7)?

slope =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

= $\frac{7 - 5}{-1 - 2}$ Let $y_2 = 7$ and $y_1 = 5$.
Let $x_2 = -1$ and $x_1 = 2$.

Exercises

Find the slope of the line that passes through each pair of points.

4. (0, 0), (4, 5)

5. (2, 4), (7, 8)

6. (-2, 0), (-3, 2)

7. (-2, -3), (1, 1)

8. (1, 4), (2, -3)

9. (3, 2), (-5, 3)