# 3\_4 Reteaching

### Point-Slope Form

The **point-slope form** of a nonvertical linear equation is  $y - y_1 = m(x - x_1)$ . In this equation, m is the slope and  $(x_1, y_1)$  is a point on the graph of the equation.

#### Problem

A line passes through (5, -2) and has a slope -3. What is an equation for this line in point-slope form?

$$y - y_1 = m(x - x_1)$$

Use point-slope form.

$$y-(-2)=-3(x-5)$$

Substitute (5, -2) for  $(x_1, y_1)$  and -3 for m.

$$y + 2 = -3(x - 5)$$

Simplify.

#### Problem

A line passes through (1, 4) and (2, 9). What is an equation for this line in point-slope form? What is an equation for this line in slope-intercept form? First use the two given points to find the slope.

$$m = \frac{9-4}{2-1} = \frac{5}{1} = 5$$

Use the slope and one point to write an equation in point-slope form.

$$y - y_1 = m(x - x_1)$$

Use point-slope form

$$y-4=5(x-1)$$

Substitute (1, 4) for  $(x_1, y_1)$  and 5 for m.

$$y - 4 = 5x - 5$$

Distributive Property

$$y = 5x - 1$$

Add 4 to each side.

An equation in point-slope form is y - 4 = 5(x - 1). An equation in slope-intercept form is y = 5x - 1.

| Name   |      |  |
|--------|------|--|
| Period | Date |  |
| 1 CHOU | Date |  |

## Point-Slope Form $(y - y_1) = m(x - x_1)$

Note: A useful form of Linear Equations is Point-Slope form. This is used when we know (or can derive) a slope and also have a point. From this form, we rewrite the equation in y = mx + b

**Point-slope Form:** Given a point  $(x_1, y_1)$  and a slope (m), the equation is:  $y - y_1 = m(x - x_1)$ 

- 1. Given m = -3 and (-3, -2) we substitute these values into our equation:
- 2. y (-2) = -3(x (-3)); (y + 2) = -3(x + 3) This is proper point-slope form.
- 3. Rewrite in slope-intercept form (y=mx+b): y=-3(x+3)-2; y=-3x-11
- 4. Rewrite in standard form (Ax + By = C): (3x + y = -11)

Generate an equation in point-slope form given the following information:

1) m = 3, containing (2,3)

2) m = 3, containing (-4,7)

COMPLETED IN CLASS

5)  $m = \frac{2}{3}$ , containing (3,2)

6)  $m = -\frac{3}{2}$ , containing (2,-3)

Confleted in CLASS

9.) (2, -2) and (-6, 1)

10.) (3,4) and (-7,4)

Confleten in class

Find the equation of the line with the given slope that passes through the given point. Write the equation of the line in point-slope form.

1. 
$$m = 2$$
 and  $(-1, -3)$   
 $y - y_1 = m(x - x_1)$   
 $y - (-3) = 2(x - (-1))$   
 $y + 3 = 2(x + 1)$   
 $y + 3 = 2(x + 1)$   
 $y + 3 = 2(x + 1)$   
 $y + 4 = -7(x - 1)$   
 $y + 1 = -7(x - 1)$ 

Find the equation of the line that passes through the given points. Write the equation in point-slope form.

9. 
$$(-1, 3)$$
 and  $(-2, 5)$ 

10.  $(-7, 7)$  and  $(5, -6)$ 

11.  $(-7, 7)$  and  $(5, -6)$ 

12.  $(-7, 7)$  and  $(5, -6)$ 

13.  $(-6, 10)$  and  $(2, -5)$ 

14.  $(-8, 7)$  and  $(-3, -5)$ 

15.  $(-6, 10)$  and  $(-2, -5)$ 

16.  $(-3, -5)$ 

17.  $(-3, -5)$ 

18.  $(-6, 10)$  and  $(-3, -5)$ 

19.  $(-3, -5)$ 

19.  $(-3, -5)$ 

19.  $(-3, -5)$ 

19.  $(-3, -5)$ 

19.  $(-3, -5)$ 

19.  $(-3, -5)$ 

19.  $(-3, -5)$ 

19.  $(-3, -5)$ 

10.  $(-7, 7)$  and  $(-7, 7)$  and  $(-7, 7)$ 

10.  $(-7, 7)$  and  $(-7, 7)$ 

11.  $(-7, 7)$  and  $(-7, 7)$ 

11.  $(-7, 7)$  and  $(-7, 7)$ 

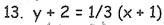
12.  $(-7, 7)$  and  $(-7, 7)$ 

13.  $(-6, -13)$ 

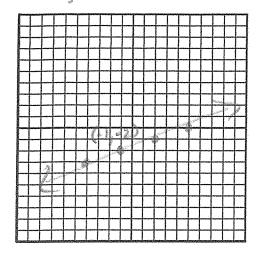
14.  $(-8, 7)$  and  $(-3, -5)$ 

15.  $(-8, 7)$  and  $(-3, -5)$ 

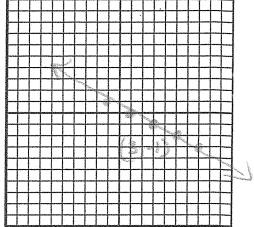
16.  $(-8, 7)$  and  $(-3, -5)$ 


17.  $(-8, 7)$  and  $(-3, -5)$ 

18.  $(-8, 7)$  and  $(-3, -5)$ 

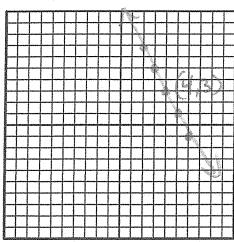

19.  $(-8, 7)$  and  $(-3, -5)$ 

10.  $(-7, 7)$  and  $($ 

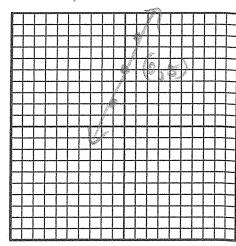

| <i>P</i> 1          | 2    | e.       | a. S | following | 1 4   | 8   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • •    | n \$  | <br> | a 8 | 4     |
|---------------------|------|----------|------|-----------|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------|-----|-------|
| Company of the last | 0000 | A 45"    | TOO  | TALLAMA   | 11000 | 200 | AND THE PARTY OF T |        | TO CO |      | THO | CIANA |
|                     |      | <b>U</b> |      |           |       | w w |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHARRE |       |      |     |       |
|                     |      |          |      |           |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |       |      |     |       |



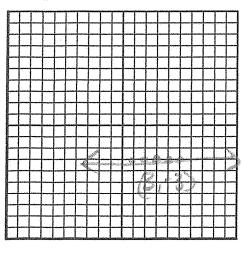
13. y + 2 = 1/3 (x + 1)Point (1 -2) Slope /3



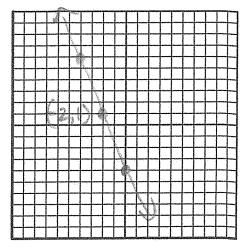

14. 
$$y + 1 = -\frac{1}{2}(x - 3)$$
  
Point Slope




15. 
$$y - 3 = -2(x - 4)$$


Point (4 3) Slope \_ 2/1




16. 
$$y - 5 = 3 \times$$
Point  $(0, 5)$  Slope  $3/1$ 



17. 
$$y + 3 = 0 (x - 3)$$
  
Point Slope O/1



18. 
$$y - 1 = -5/2 (x + 2)$$
  
Point  $(-2, 1)$  Slope  $(-5/2)$ 

